E. epsi

Le versionning
avec GIT

laurot.com

Ent Laurot

je-code. . .
T Thibault Vinchent

JE-CODE.COM

Formateur permanent EPSI

thibault.vinchent@campus-cd.com

Toujours a votre disposition pour des compléments de
abosbis bbb o cours, suivi de projet, demandes diverses.

¢ Formateur en conception d’applications depuis
2015 (écoles d’ingénieur, universités, instituts)

LuxAeterna.fr

¢ Ingénieur développement depuis 2010 (Sopra,

Le pictionary Toyota, Eurotunnel etc.).
version 1A /

[llustration : Exemples de sites créés...
... et toujours en fonctionnement !

mailto:Thibault.vinchent@campus-cd.com
mailto:Thibault.vinchent@campus-cd.com
mailto:Thibault.vinchent@campus-cd.com

Programme

Les bases de GIT
Utilit¢ de GIT
La ligne de command
Installation
Les principales commandes (init, commit, push etc.)
Les serveurs GIT : Github, Gitab, Bitbucket
fi Le travail en équipe
Le cyde de vie d’un projet

GIT avancé

- Les bonnes pratiques (régularité des commits, pull)
Le fichier readme avec Markdown
Le .gitignore
Github avancé : github.io, clone, pull request, fork, issues
Le merge conficts en pratique dans VSCode
Différence head, origin et main
Les comman des avancées : cherry-pick, reset, revert, rebase, blame etc.
Work
& Github actions, secrets..

Bonus : un repo GITHUB stylé

Les bases de GIT

Utilité, installation,

principales commandes..

Contexte historique

Problémes lors du travail a plusieurs sur un

projet
Solutions basiques : USB, dossier partagé, SVN

Et la solution avec GIT de Linus Torvald

Utilité de GIT

Gere I'historique de toutes les modifications
d’un projet

Facilite les retours en arriére

Assure la détection de modifications effectuées
par plusieurs personnes sur une méme portion

de code

Décentralisé pour assurer la sauvegarde de

données

La ligne de commande

Permet de faire tout ce qu’on peut faire sur ordinateur, sans interface graphique
Sous mac
@ Application « Terminal »
Sous windows
3 Application « Invite de commande »
Les commandes de base:
od: « change direct
Is sous mac, dir sous windows
pwd: present working directory
3 autres commandes de bases: mkdir, mv, rm, chmod, apt-get
© Astuces:
® Utiliser la tabulation pour éviter de taper le nom complet des dossiers et fichiers

& Uctiliser les fleches haut / bas pour dupliquer une commande faite auparavant

[nstallation

Sous mac :

Sous windows :

Git s'utilise avec des commandes qui commencent par « git ».
Exemple : git init

http://mac.github.com/
http://git-scm.com/download/win
http://git-scm.com/download/win
http://git-scm.com/download/win

[es commandes
principales

¢ Etaussi:
¢ Init : initialisation d’un repo git

¢ Merge : fusion de travaux

¢ Etd’autres que I'on verra plus tard
stash/apply

Serveur GIT : Githu

2

Créez votre espace github

&

&

New repository puis suivre les instructions

® Autres espaces : gitlab, bitbucket

@

Attention :

&

sivous utilisez un ordinateur partagé, il faudra peutétre modifier les

paramétres de compte avec git config user.name et user.email

le push ne fonctionne pas sivous vous étes placé dans un répertoire
syst¢me de Windows

https://github.com/
https://github.com/

Le travail en équipe

¢ Travailler le projet sur un autre ordinateur

& Clone du projet : git clone

® Résoudre les conflits

Vérifier la différence avec le remote : git status

Vérifier les différences avec le dernier commit :

git diff

Fusionner les différences : git merge

feature
branches develop

Major
feature for

Feature
next release

for future
release

From this point on,
“next release”
means the release
after 1.0

release
branches hotfixes

Severe bug
fixed for
production:

hotfix 0.2

Incorporate
bugfix in
develop

Start of
release
branch for
1.0

Bugfixes from
rel. branch
may be
continuously
merged back
into develop

Le cycle de vie
d'un projet GIT

® Lanotion de branche

® Lesversions et tag

itexercises.fracz.com

https://gitexercises.fracz.com/
https://gitexercises.fracz.com/

GIT avancé

Bonnes pratiques, merge

conflicts, commandes avancées

Quelques bonnes
pratiques

® Faire des commits régulierement (commit atomic) :

& Pas uniquement a chaque fonctionnalit¢* mais a chaque
nouvelle étape fonctionnelle. Exemple : function terminée,

bug mineur corrigé.

Il ne doit pas se passer plus d’une heure sans commit. 1
commit toutes les 15 minutes est une bonne moyenne.

& Faire des pull avant de démarrer une nouvelle tiche
(rapatrier la derniére version du projet) :

& Au début de chaque journée pour récupérer le travail de
la veille au soir aprés son départ.

& Apres chaque push pour resynchroniser son travail.

* une fonctionnalité de moyenne a grande importance aura
en général une branche dédiée.

MARKDOWN

CHEAT SHEET AND NOTEBOOK I e fichier readme

#H1 - [x] Task 1
-|] Task 2

-t avec Markdown

Images
#aasss H6 1[ARt Text](Image URL)

Emphasis Blockquotes

sltalic= or _Italic_ > Lorem Ipsum

«+Bolds+ or __Bold_ T : : :

+eBold and Italics Inline code ® Le fichier doit se trouver a la racine du repo et

“Inline Code’)

Unordered list porter le nom « readme.md ».

- First item Code block

- Second item : . "
- First nested item def function(): & Il sera deés lors automatiquement mis en avant
- Second nested item print{*Hello, world!"))
- Third item sur votre repo github.

Ordered list Horizontal Rule

1. First item ® Le markdown est un fichier texte avec des
2. Second item

1. First nested item Strikethrough possibilités de mis en forme trés simples. En
2. Second nested ~~Strikethrough-~

3. Third item savoir plus :

Links
A link to [Infinite Boop](http://infiniteboop.com "Infinite Boop™)

Tables
! Column l.l Column.z | Columr! 31

| Row 1, Column 1 | Row 1, Column 2 | Row 1, Column 3 |
| Row 2, Column 1 | Row 2, Column 2 | Row 2, Column 3 |

INFINITE BOOP

https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet
https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet
https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet
https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet
https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet
https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet
https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet

Github avancé

.io

i Sivous créez un repo ayant pour nom “votrecomptegithub. github.io” celui-ci sera automatiquement

accessible a I'adresse

f & Attention, seules les te os front seront actives (HTML, CSS,]S OK), (PHP etc NOK)
Clone
& Commande permettant de récupérer une copie d’un projet sur votre machine
Pull request
& Pull (transfert) d’'une modification sur un projet dont vous n’étes pas propriétaire.
Fork

3 Repartir d’un projet existant pour servir de base 4 un nouveau projet avec le méme
objectif mais avec une approche différente.

Sert aussi a importer pour modifier un projet qui ne nous appartient pas (en faisa
ensuite une pull reques

Urtilisé pour lister et assigner les todos, bugs en cours, demande d’amélioration etc.

https://votrecomptegithub.github.io/

Le fichier .gitignore

.gitignore

it_demo G o : ; il e :
° ¢ Fichier de configuration utilisé pour repertorier

= .gitignore .
: ';;p ' les dossiers et fichiers qui seront uniquement
{09; -%09 - sur le working directory, et donc exclu du
0g/*.log. [0-

assests/videos/ remote

asseets/video/iphone_+*.mp4

>
1
2
3
4
)
6
7/
8
9

targetjs ! @ Merging: targetjs | @

jl:.-/ 5 jl. 1[: .
merge-git-playground > target.js > @ printMessage 4
Incoming ¢ 7b18bdb - theirs Current ¢ b7bd9b1 + main ‘ O I I 1tS
13 13

14 [w 14 [ex

15 * Prints the welcome message 15 * Prints the welcome message
16 */ 16 */
Accept Incoming | Accept Combination (Incoming First) | Ignore
17 ffunction printMessage(showUsage, showVersion) 17
18 console.log("Welcome To Line Counter"); 18
19 if (showVersion) {

pl:} console.log("Version: 1.0.0"); @ Rappel :
21 }

22 if (showUsage) {

if (showUsage) {
23 console.log("Usage: node base.js <filel> console.log("Usage: node base.js <filel @ Status
24 1 i

Accept Current | Accept Combination (Current First) | Ignore
Function printMessage(showlUsage, message) {
console.log(message);

Result merge-git-playground\targetjs
13

& Diff
14 [fHk

15 * Prints the welcome message
e & Merge
No Changes Accepted
17 [Function printHessage@showUsagh {
18 console.log("Welcome To Line Counter");
19
20 if (showUsage) {
21 console.log("Usage: node base.js <filel> <file2> ...");

22 1
®mainl @ §p ®O0AD NotloggedIn Ln 17, Col 31

1 Conflict Remaining

Complete Merge

Spaces:4 CRLF {} JavaScipt &8 & (2

release
feature

branches develop branches hotfixes

master

Différences HEAD,
| ORIGIN, MAIN,
m =) L | MASTER

Incorporate
bugfix in
develop

Major : Severe bug

¢ HEAD
satof s & Désigne 'endroit ou l'on se situe dans I'arborescence de
branch for branche
From this point on, e
“next release”
th |
¢ ORIGIN

& Désigne le nom par defaut du repo distant (remote)

& MAIN

& Désigne la branche principale, en général utilisé pour les
release principales. Cf schéma

Bugfixes from
rel. branch
may be
continuously ® Lenom « MASTER » est parfois utilisé a la place de

merged back

o develop MAIN pour désigner la branche principale.

.

Rebase LQS CO mmandes
N

Feature Feature

N2 \%

avancees

Cherry-pick : importer des éléments d’'une autre branche
dans la banche courante

Reset : annuler les changements pour se positionner a un

M endroit donné de I'arborescence git
ain Rebase : modifier 'historique des commits pour placer sa
base a un autre endroit
Revert : inverse les modifications des commit spécifiés, ce
Brand New Commits qui permet de garder une trace (contrairement a reset)

Blame : permet de mettre en évidence qui a développé les

lignes de code

Stash apply / pop : conserve en mémoire le travail en cours
pour y revenir plus tard (avec stash pop - pour supp ou
apply - pour garder)

Workflow

® 2 types de workflow principaux :

& Trunk based : tout est sur le main, pas d’autres branches. Rapide
mais trés exigeant. Demande beaucoup de rigueur comme la nécessité
de faire des commit atomic). Peut bloquer la phase de test.

& Gitflow : moins exigeant et moins risqué mais plus long 4 maintenir.

¢ Commencer donc par le gitflow..

Github actions,
secrets..

® Github actions (CI/CD)

© Fichier .yml qui doivent se trouver dans le dossier
.github/workflows

S’execute a chaque nouveau push

Utile pour mettre en place un pipeline automatisé. Exemple :
lorsque je push mes modifications, le projet exécute
automatiquement les tests et si les tests réussissent, les poussent
sur le serveur de recette.

® Secrets
& Dans Settings / Secrets and variables
& Pratique pour stocker des variables d’environnements
® Qui sont utile sur le remote

3 Mais qui ne doivent pas étre visible du public

& Exemple : le motde du serveur de FTP utilis¢ pour la mise en ligne

r anesit B

- @ About Me: Onus
v’ - . ‘ SR ému

AT

mai 2024 au

M Tech Stack: ® Un repo stylé avec

YoanBor
® Génere un fichier readme.md a déposer dans le repo

[anvasceeer (R @ ncocr [iasuEe | « nomPeProfilGithub'»

Unfollow

[() Database

(= vivoows revmun [V wancana | — s | 5 vosvnes

0 Cl/cb

T [[

https://gprm.itsvg.in/

A vous !

https://learngitbranching.js.org/?locale=fr_FR
https://learngitbranching.js.org/?locale=fr_FR

MAJ 2026

Eviter checkout qui est déprécié et lui préférer switch (changement et

création de branche) ou restore
Convention de nommage des branches largement adoptée :
main : production
develop : intégration
feature/xxx
fix/xxx

Hotfix/xxx

Pull requests obligatoires : Jamais de push direct sur main: Revue de
code, Tests automatiques, Historique maitrisé
CI systématique : Chaque push déclenche : Tests, Lint, Build
Versionner les livraisons :

o gittagvl.2.0

git push ~tags

	Diapositive 1
	Diapositive 2 Thibault Vinchent
	Diapositive 3 Programme
	Diapositive 4 Les bases de GIT
	Diapositive 5 Contexte historique
	Diapositive 6 Utilité de GIT
	Diapositive 7 La ligne de commande
	Diapositive 8 Installation
	Diapositive 9 Les commandes principales
	Diapositive 10 Serveur GIT : Github
	Diapositive 11 Le travail en équipe
	Diapositive 12 Le cycle de vie d’un projet GIT
	Diapositive 13 À vous !
	Diapositive 14 GIT avancé
	Diapositive 15 Quelques bonnes pratiques
	Diapositive 16 Le fichier readme avec Markdown
	Diapositive 17 Github avancé
	Diapositive 18 Le fichier .gitignore
	Diapositive 19 La résolution de conflits
	Diapositive 20 Différences HEAD, ORIGIN, MAIN, MASTER
	Diapositive 21 Les commandes avancées
	Diapositive 22 Workflow
	Diapositive 23 Github actions, secrets..
	Diapositive 24 Bonus
	Diapositive 25 À vous !
	Diapositive 26 MAJ 2026

